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The propagation of unsteady disturbances in a slowly varying cylindrical duct carrying
mean swirling flow is described. A consistent multiple-scales solution for the mean
flow and disturbance is derived, and the effect of finite-impedance boundaries on the
propagation of disturbances in mean swirling flow is also addressed.

Two degrees of mean swirl are considered: first the case when the swirl velocity is
of the same order as the axial velocity, which is applicable to turbomachinery flow
behind a rotor stage; secondly a small swirl approximation, where the swirl velocity
is of the same order as the axial slope of the duct walls, which is relevant to the flow
downstream of the stator in a turbofan engine duct.

The presence of mean vorticity couples the acoustic and vorticity equations and the
associated eigenvalue problem is not self-adjoint as it is for irrotational mean flow.
In order to obtain a secularity condition, which determines the amplitude variation
along the duct, an adjoint solution for the coupled system of equations is derived.
The solution breaks down at a turning point where a mode changes from cut on to
cut off. Analysis in this region shows that the amplitude here is governed by a form
of Airy’s equation, and that the effect of swirl is to introduce a small shift in the
location of the turning point. The reflection coefficient at this corrected turning point
is shown to be exp (iπ/2).

The evolution of axial wavenumbers and cross-sectionally averaged amplitudes
along the duct are calculated and comparisons made between the cases of zero mean
swirl, small mean swirl and O(1) mean swirl. In a hard-walled duct it is found that
small mean swirl only affects the phase of the amplitude, but O(1) mean swirl produces
a much larger amplitude variation along the duct compared with a non-swirling mean
flow. In a duct with finite-impedance walls, mean swirl has a large damping effect
when the modes are co-rotating with the swirl. If the modes are counter-rotating then
an upstream-propagating mode can be amplified compared to the no-swirl case, but
a downstream-propagating mode remains more damped.

1. Introduction
There has been considerable interest in the propagation of unsteady disturbances

in mean swirling duct flow, particularly in its application to sound propagation and
instability in turbomachines. It is important to include the aspects of mean swirling
flow when considering properties of disturbance propagation behind a rotating fan
in aeroengine ducts, since in this region the mean swirl is significant. Indeed, in some
cases swirl Mach numbers can be comparable to those of the axial flow. Kerrebrock
(1977) was one of the first to establish the properties of disturbances in mean swirling
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flow in uniform ducts. Work in this area has been extended more recently by Golubev
& Atassi (1998) and Tam & Auriault (1998).

There is a natural interest in sound transmission through ducts of varying cross-
section, since in practical applications it is likely that ducts will not be exactly uniform.
Rienstra (1999) has considered this problem recently, focusing on the effects of gradual
diameter change in aeroengine intakes with irrotational mean flow, using the method
of multiple scales. Here we address the combined problem of mean swirling flow
carried by ducts with slow cross-sectional variation. One obvious application of this
is the region behind a rotor stage where the duct is not exactly parallel but varies
slowly in diameter with axial distance and where the mean flow has considerable swirl.
The axial slope of the duct walls defines a small parameter, ε, which characterizes
the slow variation. In the first instance we consider the general case where the swirl
velocity is O(1), but we also consider the interesting limiting case when the amount of
mean swirl is small (i.e. when the swirl velocity is O(ε)). This limit has application in
the bypass duct region of a turbofan engine, where there may be some small residual
swirling flow remaining after passing through the stator, and is also considerably
easier to evaluate. The aim here is to consider what effect the presence of mean
vorticity, together with cross-sectional duct variation, may have on the transmission
of sound in this region. In reality there are likely to be turbulent wakes in the region
between the rotor and the stator of an aeroengine. These may have an important
effect on the mean flow but are not accounted for in the model.

The presence of mean swirl introduces several complicating factors to the analysis
of Rienstra (1999). As shown by Golubev & Atassi (1998) the small disturbance is
no longer expressed solely in terms of a potential but now has a vortical part as
well. This, and the presence of mean vorticity, also results in the coupling of acoustic
and vorticity equations. Therefore, instead of a single governing acoustic equation
there are now four coupled equations. The eigenvalue problem resulting from the
assumption of normal-mode form is no longer self-adjoint, necessitating determina-
tion of the adjoint solution for the coupled system of equations. The multiple-scales
method implemented by Rienstra (1999), where the small parameter introduced is
typically of the order of the axial slope of the duct walls, can still be applied to
formulate an explicit solution. Since the presence of swirl couples the potential and
vorticity equations, the associated eigenvalue relation produces two distinct sets of
eigenvalues, and the corresponding eigenvectors are coupled acoustic–vorticity modes.
One set of eigenmodes propagates with phase speeds close to the speed of sound
and is sustained by compressibility effects. The second set of eigenmodes is nearly
convected, vorticity dominated and often referred to as rotational modes. This family
of eigenmodes consists of two branches which asymptotically approach a singular
point corresponding to pure convection.

The techniques applied to deal with non-uniform ducts carrying mean flow include
quasi-one-dimensional approaches (Eisenberg & Kao 1971; Huerre & Karamcheti
1973), the use of small parameters related to slow area variation (Tam 1971; Thomp-
son & Sen 1984), the multiple-scales approach (Nayfeh & Telionis 1973; Nayfeh,
Kaiser & Telionis 1975; Nayfeh, Telionis & Lekoudis 1975; Nayfeh, Shaker & Kaiser
1980) and direct numerical simulation (Astley & Eversman 1981; Eversman & Astley
1981). Most of this work is restricted to irrotational mean flows and only the numerical
technique contains a general formulation which can treat rotational mean flows. The
multiple-scales work of Nayfeh and co-workers was implemented very successfully
but only a model mean flow was used which does not satisfy the governing equations.
Rienstra (1999) used a solution to the mean flow equations to describe an almost
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uniform mean flow and showed that this consistent mean flow expansion, together
with the impedance wall boundary condition of Myers (1980), is necessary to obtain
an explicit multiple-scales solution of the acoustic problem. A comparison between
the multiple-scales solution and direct numerical simulation, using the finite element
method, has been carried out by Rienstra & Eversman (2001) for the irrotational
problem with particularly good results.

Here we apply a perturbation analysis to determine a solution to the nonlinear
mean flow equations for an axisymmetric duct which changes slowly in cross-section
along its axis. This is calculated as a numerical solution of an ODE for the steady
streamfunction, given a prescribed set of conditions at the upstream end of the duct.
At leading order, the problem for the unsteady perturbation to the mean flow reduces
to an eigenvalue problem for the local steady flow in a locally parallel duct, whereby
a set of linear equations is solved at each axial location. At the next order, a secularity
condition is found which determines the amplitude along the duct. Also considered is
the transition from cut on to cut off, at so-called turning points, where the amplitude
predicted by the general solution becomes singular. In this region an inner solution
is derived which is used to determine the reflection coefficient at a turning point.

The general outline of the paper is as follows. Section 2 describes the basic
formulation of the problem and introduces the governing equations for the mean
flow and perturbation. The full mean flow solution for O(1) swirl is described in
§ 3, followed by the method for determining the associated acoustic field and some
examples of the calculation. The corresponding analysis for small mean swirl is given
in § 4. A comparison between the three flow cases of significant mean swirl, small
mean swirl and non-swirling flow is also made. Analysis in the turning point region
is given in § 5.

2. Problem formulation
Consider a cylindrical duct with slowly varying circular cross-section, described in

terms of a cylindrical coordinate system (x, r, θ), The duct is assumed to carry a steady,
swirling mean flow with an unsteady acoustic perturbation, under the assumption of
a compressible perfect isentropic fluid. Throughout, lengths are non-dimensionalized
using a typical duct radius R∞, velocities are scaled on a reference sound speed
c∞, density by ρ∞ and pressure by ρ∞c2∞, and all quantities used subsequently are
non-dimensional.

Since the duct cross-section is assumed to vary slowly it is convenient to introduce
a slow axial scale X = εx, where ε is a small parameter taken typically to be the axial
slope of the duct walls. The flow region of the duct is then defined by

0 6 R1(X) 6 r 6 R2(X). (1)

The general flow field is expressed in terms of velocity v, sound speed c, density ρ
and pressure p. The fluid motion is governed by the Euler equations,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

ρ

(
∂v

∂t
+ v · ∇v

)
+ ∇p = 0, (3)

together with conditions for a homentropic perfect gas,

γp = ργ, c2 =
dp

dρ
= ργ−1, (4)

where γ is the ratio of specific heats.
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A space–time-dependent perturbation field of infinitesimal disturbances, [ṽ, c̃, ρ̃, p̃],
is imposed on an axisymmetric steady mean flow field, [V , C, D, P ], such that the
total flow field is given by

[v, c, ρ, p](X, r, θ, t) = [V , C, D, P ](X, r) + [ṽ, c̃, ρ̃, p̃](X, r, θ, t). (5)

The Euler equations are linearized with respect to the unsteady disturbances, resulting
in a set of linear equations for the disturbance field, while the steady flow satisfies the
nonlinear Euler equations. In the next section we describe the method of solution in
each case.

3. Significant mean vorticity
We first consider a mean flow field in which the normalized mean vorticity is of

the same order of magnitude as the mean axial velocity. We are primarily concerned
with the case in which the azimuthal (swirl) velocity is of comparable size to the axial
velocity, but the case of zero swirl can also lead to significant vorticity, provided that
the axial flow is radially non-uniform.

3.1. Mean flow

A mean flow of the form

V = U(X, r; ε)ex + V (X, r; ε)er +W (X, r; ε)eθ, (6)

is assumed. The steady continuity equation,

∇ · (DV ) = 0, with
∂

∂x
= ε

∂

∂X
, (7)

shows that O(ε) axial variations must be balanced by O(ε) radial variations, which
leads to the expansions

U(X, r; ε) = U0(X, r) + O(ε2), (8)

V (X, r; ε) = εV1(X, r) + O(ε3), (9)

W (X, r; ε) = W0(X, r) + O(ε2), (10)

D(X, r; ε) = D0(X, r) + O(ε2), (11)

P (X, r; ε) = P0(X, r) + O(ε2), (12)

C(X, r; ε) = C0(X, r) + O(ε2). (13)

It is assumed, for simplicity, that the mean entropy is uniform, although variations
in entropy may be important in aeroengine applications. The inclusion of mean swirl
forces all mean flow terms to vary with both X and r, whereas for the almost uniform
mean flow of Rienstra (1999) all leading-order mean flow terms, except the radial
velocity V1, vary only with X. Under the assumption of a homentropic perfect gas,
P0 and C0 are related to the leading-order density, D0, by

P0 =
1

γ
D
γ
0, C0 = D

(γ−1)/2
0 .

In order to solve for the velocity field and density, the analysis given in § 7.5 of
Bachelor (1967) for incompressible flow in a variable-area pipe is modified to include
compressibility.
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With the velocity field given by (8)–(10) the corresponding mean vorticity, ξ, is

ξ =
1

r

∂(rW0)

∂r
ex − ε∂W0

∂X
er − ∂U0

∂r
eθ + O(ε2). (14)

The O(ε) continuity equation,

∂(D0U0)

∂X
+

1

r

∂(rD0V1)

∂r
= 0, (15)

can be satisfied by writing velocity components U0 and V1 in terms of a streamfunc-
tion, ψ(X, r), such that

U0 =
1

rD0

∂ψ

∂r
, V1 = − 1

rD0

∂ψ

∂X
. (16)

From Bernoulli’s theorem (enthalpy constant along streamlines) and the θ-momentum
equation we have

1
2
(U2

0 +W 2
0 ) +

D
γ−1
0

γ − 1
= H(ψ), (17)

rW0 = C(ψ), (18)

where H (the enthalpy) and C (the circulation) are arbitrary functions of ψ. Equation
(18) states that the circulation rW0 is constant along a streamline. For homentropic
flow the r- or x-components of Crocco’s relation

V × ξ = ∇H
can be used to obtain an expression for the azimuthal vorticity, ξθ , in terms of H and
C . Taking the r-component leads to the identity

W0ξx −U0ξθ =
∂H

∂r
= rD0U0H

′(ψ), (19)

where ′ denotes differentiation with respect to ψ. Now using (14) and (18) to write
the axial vorticity, ξx, in terms of C(ψ), we find that

ξθ = W0D0C
′(ψ)− rD0H

′(ψ). (20)

Thus, using the expression in (14) for ξθ , we obtain a governing equation for ψ and
D0 in the form

∂

∂r

(
1

rD0

∂ψ

∂r

)
= rD0H

′(ψ)− D0C
′(ψ)

C

r
. (21)

The Bernoulli condition (17) can also be written in terms of ψ and D0 to give

1

2

1

r2D2
0

(
∂ψ

∂r

)2

+
C2

2r2
+
D
γ−1
0

γ − 1
= H(ψ). (22)

Equations (21) and (22) are two coupled equations which govern the mean flow field.
The associated boundary conditions for an annular duct are

ψ(X, r = R1) = 0, (23)

ψ(X, r = R2) = constant. (24)

For a hollow duct the first condition is replaced by ψ ∝ r2 as r → 0. The constant
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in (24) is determined from conditions specified at the inlet of the duct. Note that
derivatives in the axial direction do not feature in the governing equations owing to
our assumption of slow axial variation. The X-dependence in the problem is provided
parametrically through the variation of the location of the boundary conditions.

Equations (21) and (22) can be solved numerically for any prescribed inlet flow,
but we consider here an example which allows the functions H and C to be written
analytically in terms of ψ. Suppose that at the inlet (X = 0) the flow consists of
uniform axial flow with rigid-body rotation, such that

U0(X = 0, r) = Ui, W0(X = 0, r) = Ωr, V1(X = 0, r) = 0. (25)

Since D0 satisfies the radial momentum equation

1

γ − 1

∂(Dγ−1
0 )

∂r
=
W 2

0

r
, (26)

it follows that, at X = 0,

D
γ−1
0

γ − 1
=
Ω2r2

2
+
Kγ−1

γ − 1
, (27)

where K is an arbitrary constant which is taken to be unity. Integration of the first
expression in (16) with respect to r gives

ψ(X = 0, r) =
Ui

Ω2γ

[
(γ − 1)

Ω2r2

2
+ 1

]γ/(γ−1)

− Ui

Ω2γ

[
(γ − 1)

Ω2R1(0)2

2
+ 1

]γ/(γ−1)

,

(28)

which can be rearranged to express r in terms of ψ. Using this we then obtain
expressions, from (17) and (18), for C and H in terms of ψ alone, namely

C(ψ) =
2

Ω(γ − 1)


(
ψΩ2γ

Ui

+

[
(γ − 1)

Ω2R1(0)2

2
+ 1

]γ/(γ−1)
)(γ−1)/γ

− 1

 , (29)

H(ψ)=
(Ui)

2

2
+

1

γ − 1
+

2

γ − 1


(
ψΩ2γ

Ui

+

[
(γ − 1)

Ω2R1(0)2

2
+1

]γ/(γ−1)
)(γ−1)/γ

− 1

 .

(30)

The coupled equations (21) and (22) can now be solved for ψ and D0 at each axial
location, using a Runge–Kutta integration scheme and iteration.

Two ducts are taken as example cases, one which contracts slowly with axial
distance and a second which expands slowly, and they are shown in figure 1. They
are defined by

R1(X) = 0.5482± 0.05 tanh(2X − 2),

R2(X) = 1.1518∓ 0.05 tanh(2X − 2),

where the ± refers to the first (contracting) and second (expanding) ducts respectively.
The corresponding mean flow solutions are shown in figures 2 and 3 respectively.
In both cases the starting conditions are taken to be Ui = 0.3 and Ω = 0.3. (For
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Figure 1. Duct shapes used as examples: (a) duct 1 – contracting, (b) duct 2 – expanding.
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Figure 2. Contour plots of mean flow solutions for the duct in figure 1(a) when Ui = 0.3, Ω = 0.3.
(a) U0, (b) V1, (c) W0, (d) D0.

the contracting duct these values correspond to local inlet axial and azimuthal Mach
numbers Mx = 0.296, MΩ = 0.355 respectively at the outer wall, and Mx = 0.299,
MΩ = 0.15 at the inner wall. For the expanding duct the Mach numbers are Mx =
0.297, MΩ = 0.327 at the outer wall and Mx = 0.299, MΩ = 0.178 at the inner wall.)
The initial uniform axial flow develops some radial variation as it moves along the
duct and the mean swirl departs from pure rigid-body rotation (note that this latter
point is particularly clear in figure 3c). Also shown are the radial and axial variations
of the radial velocity V1 and leading-order density D0. Note that the sign of V1 is
determined by the axial variation of the adjacent wall.



214 A. J. Cooper and N. Peake

1.2

1.0

0.8

0.6

0 0.4 0.8 1.2 1.6 2.0

(a)

r

1.2

1.0

0.8

0.6

0 0.4 0.8 1.2 1.6 2.0

(c)

r

X

1.2

1.0

0.8

0.6

0 0.4 0.8 1.2 1.6 2.0

(b)

1.2

1.0

0.8

0.6

0 0.4 0.8 1.2 1.6 2.0

(d )

X

Figure 3. Contour plots of mean flow solutions for the duct in figure 1(b) when Ui = 0.3, Ω = 0.3.
(a) U0, (b) V1, (c) W0, (d) D0.

3.2. Disturbance field

The presence of mean vorticity means that the unsteady disturbance velocity is not
irrotational, and so is decomposed into potential and rotational parts, following
Golubev & Atassi (1998), as

ṽ = ∇φ+ uR. (31)

The unsteady pressure is expressed only in terms of the unsteady potential, φ, by

p̃ = −D0

Dφ

Dt
, (32)

where D/Dt ≡ (∂/∂t) + V · ∇ is the convected derivative. After imposing condition
(32) uR is uniquely defined. The linearized Euler equations then give rise to the two
coupled equations

DuR

Dt
+ (uR · ∇)V = −ξ × ∇φ, (33)[

D

Dt

1

C2
0

D

Dt
− 1

D0

∇ · (D0∇)

]
φ =

1

D0

∇ · (D0u
R), (34)

where ξ is the mean vorticity defined in § 3.1. In the absence of mean vorticity, uR is
decoupled from φ, and can then be determined explicitly in terms of the unsteady
vortical flow at upstream infinity.

Using the method of multiple scales a solution with slowly varying amplitude and
axial and radial wavenumbers of the form

(φ, uRx , u
R
r , u

R
θ )(x, r, θ, t; ε) = (A,X,R,T)(X, r; ε) exp

(
iωt− imθ − i

ε

∫ X

k(η) dη

)
(35)
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is sought, where ω is the frequency of the acoustic perturbation, m is the circumfer-
ential wavenumber and k is the axial wavenumber. Substitution of the disturbance
form (35) into the governing equations (33) and (34) gives four coupled equations
which, up to and including O(ε), are

∂2A

∂r2
+

(
1

r
+
∂ lnD0

∂r

)
∂A

∂r
+

(
Λ2

C2
0

− m2

r2
− k2

)
A+

∂R
∂r

+

(
1

r
+
∂ lnD0

∂r

)
R− imT

r
− ikX

=
iε

D0A

{
∂

∂X

[(
U0Λ

C2
0

+ k

)
D0A

2

]
+

1

r

∂

∂r

[
rΛV1

C2
0

D0A
2

]}
− ε

D0

∂

∂X
(D0X), (36)

iΛX+
∂U0

∂r

(
∂A

∂r
+R

)
= −ε

{
V1

∂X
∂r

+U0

∂X
∂X

+X∂U0

∂X
+

im

r

∂W0

∂X
A

}
, (37)

iΛR− 2W0T
r

+ik
∂U0

∂r
A+

im

r

1

r

∂(rW0)

∂r
A=−ε

{
V1

∂R
∂r

+U0

∂R
∂X

+R∂V1

∂r
− ∂U0

∂r

∂A

∂X

}
,

(38)

iΛT+
1

r

∂(rW0)

∂r

(
∂A

∂r
+R

)
= −ε

{
V1

∂T
∂r

+U0

∂T
∂X

+
V1T
r
− ∂W0

∂X
(ikA−X)

}
,

(39)

with Λ = ω − kU0 − mW0/r. Note that, given no O(1) mean radial flow, the acoustic
pressure associated with the mode is proportional to Λ. The case Λ = 0 corresponds
to a disturbance which is exactly convected with the mean axial and swirling flows.

The inner and outer duct walls are taken to have complex impedances Z1 and Z2

respectively. (Hard wall boundary conditions are given by the limit Zj → ∞.) The
appropriate boundary conditions for an arbitrary mean flow along a curved wall,
originally given by Myers (1980) and implemented by Rienstra (1999), are

iω(ṽ · nj) =
[
iω + V · ∇− nj · (nj · ∇V )

]( p̃

Zj

)
at r = Rj(X), j = 1, 2, (40)

where nj are outward-directed normal vectors at the wall (explicit expressions for nj
are given in Rienstra 1999).

The boundary conditions in (40) become

iω

(
∂A

∂r
+R

)
± D0Λ

2A

Zj
= εω

dRj
dX

(kA+ iX)

± iε

A

[
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r
+

dRj
dX

∂U0

∂r

](
D0ΛA

2

Zj

)
(41)

at r = Rj(X), j = 1, 2, where ± refers to evaluation at R1(X) and R2(X) respectively.

The solution is now expanded in powers of ε such that

(A,X,R,T)(X, r; ε) = (A0,X0,R0,T0)(X, r) + ε(A1,X1,R1,T1)(X, r) + O(ε2), (42)
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and substituted into equations (36)–(39). Combining the O(1) terms in (37) and (39)
gives the general result

X0 =
(∂U0/∂r)T0

(1/r)(∂(rW0)/∂r)
,

and the corresponding O(ε) equations can be used to give a similar result for X1 in
terms of T1. After some algebra, we find at O(1) and O(ε) sets of coupled equations
which can be expressed as

(L− kK)ψ0 ≡Sψ0 = 0, (43)

(L− kK)ψ1 ≡Sψ1 = f, (44)

respectively, where ψn = (An, ηn,Rn, iTn). Here ηn = kβ2
0An (n = 0, 1) is a new variable

introduced in order to write the system of equations in the form of a linear eigenvalue
problem, as in Golubev & Atassi (1998), with β2

0 = 1 − U2
0/C

2
0 . Expressions for L,

K and f are given in Appendix A. The corresponding boundary conditions are

iω

(
∂A0

∂r
+R0

)
± D0Λ

2A0

Zj
= 0, (45)

iω

(
∂A1

∂r
+R1

)
± D0Λ

2A1

Zj
= ω

dRj
dX

(kA0 + iX0)

± i

A0

[
U0

∂

∂X
+V1

∂

∂r
− ∂V1

∂r
+

dRj
dX

∂U0

∂r

](
D0ΛA

2
0

Zj

)
, (46)

at r = Rj(X), j = 1, 2.
In the special case W0 = 0, the azimuthal component of uR (i.e. T0) is zero.

However, little further simplification is possible, except when ∂U0/∂r = 0, in which
case X0 = R0 = 0 as well, and the unsteady flow is irrotational. This then corresponds
exactly to Rienstra’s (1999) solution for irrotational mean flow.

The system of equations in (43) with the boundary conditions in (45) is solved
numerically using a Chebyshev spectral collocation method with a staggered grid
as described by Khorrami (1991). At each axial location the domain [R1(X), R2(X)]
is transformed to the interval [−1, 1] and the first equation in the matrices L and
K, together with the solution A0, are evaluated at a main set of M collocation
points defined by xj = cos πj/M, j = 0, . . . ,M. A value of M = 48 is used which
gives a convergent solution. The first and last rows of this discretized equation
contain the boundary conditions. The remaining three equations, and the solutions
η0, R0 and iT0, are evaluated at staggered collocation points zj = cos(2j + 1)π/2M,
j = 0, . . . ,M − 1, which exclude the boundaries. The resulting discretized eigenvalue
problem is then solved at each axial location using a QZ algorithm which determines

the axial wavenumber k(X) and a normalized numerical solution ψ̂0(X, r). This gives
the leading-order solution up to an arbitrary, slowly varying, function, N(X), such
that

ψ0(X, r) = N(X)ψ̂0(X, r) = N(X)(Â0, η̂0, R̂0, iT̂0). (47)

The function N(X) is determined from the fact that (44) is solvable, i.e. there exists
a solution ψ1. The solvability condition is obtained from taking the inner product
of (44) with the homogeneous solution of the adjoint problem. Since the operator
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S is not self-adjoint (as it is in the case of irrotational mean flow) the solution
to the adjoint problem must be determined using the method described below. Any
eigenfunction ψ0 of the operator S, and its adjoint ψ†0, satisfy the identity

〈ψ†0,Sψ0〉 = 〈S†ψ†0,ψ0〉, (48)

where S† is the adjoint operator and 〈·, ·〉 defines a suitable inner product. If

ψ0 = (A0, η0,R0, iT0) and ψ†0 = (Y1, Y2, Y3, Y4), then using the inner product

〈A,B〉 =

∫ R2

R1

4∑
n=1

A∗nBnr dr,

where ∗ denotes the complex conjugate, and S as defined in (43), we find that

〈ψ†0,Sψ0〉 = 〈S†ψ†0,ψ0〉+

[
Y ∗1 rD0

(
∂A0

∂r
+R0

)
+ A0

(
∂(rW0)

∂r
Y ∗4 − rD0

∂Y ∗1
∂r

)]R2

R1

,

(49)

where S† is defined in Appendix A. If the terms evaluated at R1(X) and R2(X) in
(49) are set to zero, then the adjoint condition given in (48) is satisfied. Thus, using
the fact that Sψ0 = 0 and the boundary conditions in (45), the adjoint eigenvector

ψ†0 is determined by solving

S†ψ†0 = 0, (50)

together with boundary conditions

∂(rW0)

∂r
Y ∗4 − rD0

(
∂Y ∗1
∂r
± D0Λ

2Y ∗1
iωZj

)
= 0 at r = Rj(X), j = 1, 2. (51)

It can be seen from the sets of equations in (43) and (50) and the corresponding
boundary conditions, that terms in the adjoint solution are related to terms in the
eigenfunction ψ0 by

Y1 = A∗0, (52)

Y2 =

(
2ωmU0

C2
0β

2
0

+ k∗
)
D0β

2
0A
∗
0, (53)

Y3 =
D0iT∗0

(1/r)∂(rW0)/∂r
, (54)

Y4 = − D0R∗0
(1/r)∂(rW0)/∂r

, (55)

where ωm = ω − mW0/r.
The solvability condition itself is obtained from the relation

〈ψ†0,Sψ1〉 = 〈S†ψ†0,ψ1〉+

[
Y ∗1 rD0

(
∂A1

∂r
+R1

)
+ A1

(
∂(rW0)

∂r
Y ∗4 − rD0

∂Y ∗1
∂r

)]R2

R1

.

(56)

However, from (44), 〈ψ†0,Sψ1〉 = 〈ψ†0, f〉, and using the boundary conditions in (46)
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and (51) we find that

〈ψ†0, f〉 =

[
−iR2D0A0

dR2

dX
(kA0 + iX0)

]
r=R2

+

[
iR1D0A0

dR1

dX
(kA0 + iX0)

]
r=R1

−
[
iR2D0

{
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r
+

dR2

dX

∂U0

∂r

}(
D0ΛA

2
0

iωZ2

)]
r=R2

−
[
iR1D0

{
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r
+

dR1

dX

∂U0

∂r

}(
D0ΛA

2
0

iωZ1

)]
r=R1

. (57)

Using the expression for f which appears in Appendix A, and after some rearrange-
ment, the solvability condition above leads to a governing equation for N(X) of the
form

F(X)
d

dX
[N2(X)] = N2(X)G(X), (58)

where the exact expressions for F(X) and G(X) appear in Appendix B. The general
solution to (58) is

N2(X) = N2
0 exp

(∫ X G(η)

F(η)
dη

)
, (59)

where N0 is a normalization constant. This is the main mathematical result of the
paper. The adiabatic invariant (58) may be of as much practical and theoretical
importance as the explicit solution (59), Kevorkian & Cole (1996).

In the limit of zero mean vorticity, i.e. W0 → 0 and U0(X, r) → U0(X), it can
be shown from Appendix A that F(X) → f(x) and G(X) → −df(X)/dX, where

f(X) = (D0ωσ/C0)
∫ R2

R1
Â2

0r dr. This then leads to the relation

N2(X) =
N2

0

f(X)
,

which is exactly the solution given by Rienstra (1999).

3.3. Results

The results presented throughout this paper are for the initial conditions Ui = 0.3,
Ω = 0.3, with corresponding steady flows shown in figures 2 and 3. For the most part
we take both inner and outer walls to be rigid but we also consider the effect of an
acoustic lining located on the outer wall. When the outer wall is lined the complex
impedance is taken to be Z2 = 2− i. For a hard-walled duct the pressure-dominated
family of (acoustic-type) eigenmodes generally consists of a finite number of upstream
and downstream propagating cut-on modes (ki = 0) and an infinite discrete set of
cut-off modes (ki 6= 0). Each eigenmode is associated with a radial order and the cut-
on modes occur at the lowest radial orders. The first radial-order mode is considered
here for both swirling and non-swirling flows.

The unsteady pressure field can be characterized by the axial wavenumber k(X)
and the cross-sectionally averaged potential amplitude

Ā(X) =

[∫ R2

R1

|A0(X, r)|2r dr

]1/2

. (60)

Consider first the duct shown in figure 1(a) with hard walls when m = 20 and ω = 26.
These parameters produce a first radial-order mode which is cut on along the entire
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Figure 4. Results for hard-walled duct (contracting duct 1) when m = 20, ω = 26, Ui = 0.3. Dashed
lines correspond to non-swirling flow, and solid lines to swirling flow with Ω = 0.3. kr as a function
of X for the first radial-order (a) downstream-propagating mode, (b) upstream-propagating mode
(ki = 0 in all cases). Cross-sectionally averaged amplitudes for (c) downstream-propagating mode,
normalized to unity at the upstream end of the duct, (d) upstream-propagating mode normalized
to unity at the downstream end of the duct.

length of the duct. The axial wavenumbers for downstream(+) and upstream(−)
propagating modes are shown in figures 4(a) and 4(b) respectively. The effect of
swirl is to move the eigenvalues closer to cut off. (The results for the downstream-
propagating mode are interesting due to the fact that kr changes sign, which suggests
that the phase fronts turn around and propagate upstream. The direction of the
group velocity for this mode has been checked using the Briggs–Bers criterion, and
remains pointing downstream.) The cross-sectionally averaged amplitudes are shown
in figures 4(c) and 4(d) where (±) values have been normalized to unity at the
upstream and downstream ends of the duct respectively. For the non-swirling flow
the amplitude of the downstream-propagating mode grows as it moves downstream,
whilst the amplitude of the upstream-propagating mode decays as it moves upstream
(due to the duct area variation). The presence of O(1) swirl acts to reinforce these
characteristics and produces a much larger variation in Ā along the duct.

Figure 5 shows the same case as figure 4 but for the finite-impedance outer wall.
The effect of the liner is to cut off the modes in figure 4 for both non-swirling and
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Figure 5. Results for soft-walled duct (Z2 = 2 − i, duct 1) when m = 20, ω = 26, Ui = 0.3.
Dashed lines correspond to non-swirling flow, and solid lines to swirling flow with Ω = 0.3. Axial
wavenumbers in the complex k-plane for the first radial-order (a) downstream-propagating mode,
(b) upstream-propagating mode. (Circles denote values at X = 0.) Cross-sectionally averaged ampli-
tudes for (c) downstream-propagating mode, normalized to unity at the upstream end of the duct,
(d) upstream-propagating mode normalized to unity at the downstream end of the duct.

swirling flows. The evolution of the axial wavenumbers in the complex plane is shown
in figures 5(a) and 5(b). The variation in Ā is shown in figures 5(c) and 5(d). For
swirling flow the presence of the liner results in Ā decaying for both downstream
and upstream modes as they propagate along the duct, and both are more damped
than the non-swirling flow counterparts. The increases in |ki| and, to a lesser extent,
the decrease in Ā when swirl is introduced imply that the acoustic lining is working
more efficiently to attenuate the unsteady pressure than it would in irrotational flow.
This could be explained by noting that swirl has the effect of reducing kr in these
cases, causing the normals to the phase fronts to be tilted further away from the axial
direction, and thereby increasing the dissipation involved in the impingement of the
unsteady flow at the compliant wall.

In the expanding duct with a lined outer wall figure 6 shows that for both non-
swirling and swirling flows the right-propagating mode amplitude decays as it moves
downstream and the left-propagating mode amplitude grows as it moves upstream. In
both cases, however, the effect of swirl is to reduce the averaged amplitude (as in the
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Figure 6. As figure 5 but for the expanding duct 2.

case of the contracting duct). A more physical interpretation of whether modes are
amplified or damped must account for both the variation of Ā and the exponential

factor exp [−i
∫ X

(k(η)/ε) dη]. This is considered at the end of the next section.

4. Small mean vorticity
The analysis described in § 3 applies to the general case in which the mean vorticity

is an O(1) quantity, of comparable magnitude to that of the normalized axial velocity.
However, some simplification is possible in the limit of small mean vorticity, which
will be described below. To achieve this we suppose that W = O(ε), and that to
leading order the axial velocity is independent of r.

4.1. Mean flow

The expansion of the mean flow in powers of ε is the same as given in equations
(8)–(13) for O(1) swirl, except that

W (X, r; ε) = εW1(X, r) + O(ε2), (61)

and the assumption that the mean vorticity is small, i.e. |ξ| = O(ε), implies that any
radial variations of U (and C and D) appear at O(ε2). The leading-order solutions
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for U0, D0 and V1 are then exactly as given by Rienstra (1999)

U0(X) =
F

D0(X)[R2
2(X)− R2

1(x)]
, V1(X, r) = − F

2rD0(X)

∂

∂X

[
r2 − R2

1(X)

R2
2(X)− R2

1(X)

]
,

where D0(X) satisfies

1

2

[
F

D0(R
2
2 − R2

1)

]2

+
1

γ − 1
D
γ−1
0 = E,

and F and E are constants.
The additional equation governing W1 is

U0

∂(rW1)

∂X
+ V1

∂(rW1)

∂r
= 0, (62)

which can be solved by introducing a streamfunction as in (16). Since U0 and D0 now
depend only on X the streamfunction can be written as

ψ(X, r) =
D0U0

2
[r2 − R2

1(X)], (63)

and under the initial conditions

U0(0) = Ui, D0(0) = 1, W1(0, r) = Ωr

the downstream evolution of the mean swirl is given by

rW1(X, r) = Ω

(
D0(X)U0(X)

Ui

[r2 − R2
1(X)] + R2

1(0)

)
. (64)

If R1 ≡ 0 the mean swirl is rigid-body rotation with axially varying angular velocity.
If R1 6= 0 then the swirl becomes a rigid-body rotation plus a free-vortex component.

4.2. Disturbance field

If unsteady vorticity were introduced far upstream, then it would be convected (to
leading order) with the axial steady flow according to classical rapid distortion theory
of irrotational flow (Goldstein 1978), and would be uncoupled from the potential
component of the unsteady flow (again to leading order). Since this behaviour is
well-known, we will restrict attention to the case in which uR → 0 upstream. It
then follows from (33) that since the mean vorticity is O(ε), the vortical part of the
perturbation is also O(ε), i.e. in the notation of the previous sections, X0 = 0, R0 = 0
and T0 = 0. The governing equations (36)–(37) then become

D0L(A0) =
iε

A0

{
∂

∂X

[(
U0λ

C2
0

+ k

)
D0A

2
0

]
+

1

r

∂

∂r

[
r
V1λ

C2
0

D0A
2
0

]}

+εD0

{
ikX1 − 1

r

∂(rR1)

∂r
+

imT1

r
+

2λmW1

C2
0 r

A0

}
+ O(ε2), (65)

iλX1 = O(ε), (66)

iλR1 = −im
1

r2

∂(rW1)

∂r
A0 + O(ε), (67)

iλT1 = −1

r

∂(rW1)

∂r

∂A0

∂r
+ O(ε), (68)
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where λ = ω − kU0 (λ = 0 corresponds to a disturbance convected with the axial
flow) and

L ≡ ∂2

∂r2
+

1

r

∂

∂r
+
λ2

C2
0

− k2 − m2

r2
. (69)

The boundary conditions become

iω
∂A0

∂r
± λ2D0A0

Zj
= ± iε

A0

[
U0

∂

∂X
+ V1

∂

∂r
+
∂V1

∂r
∓ 2imW1

r

](
λD0A

2
0

Zj

)

+ε

[
ωk

dRj
dX

A0 − iωR1

]
at r = Rj(X), (70)

where ± refer to R1 and R2 respectively.
Equations (67) and (68) are used to write R1 and T1 in terms of A0, to give

L(A0) = 0, (71)

D0L(A1) =
i

A0

{
∂

∂X

[(
U0λ

C2
0

+ k

)
D0A

2
0

]
+

1

r

∂

∂r

[
r
V1λ

C2
0

D0A
2
0

]}

+

{
mD0A0

λr2

∂

∂r

[
1

r

∂(rW1)

∂r

]
+

2λmD0W1A0

C2
0 r

}
. (72)

From (64) it can be seen that rW1 is of the form a(X)r2 + b(X), so that the third term
on the right-hand side of (72) vanishes.

The leading-order solution of (71) is exactly that given in Rienstra (1999), i.e.

A0(X, r) = N(X)

{
Jm(α(X)r) +

M(X)

N(X)
Ym(α(X)r)

}
≡ N(X)φm(r, X), (73)

where Jm and Ym are mth-order Bessel functions of the first and second kinds
respectively. The radial eigenvalues α and the expression M(X)/N(X) are obtained
from the leading-order boundary conditions which can be written as

αR2J
′
m(αR2)− ζ2Jm(αR2)

αR2Y
′
m(αR2)− ζ2Ym(αR2)

=
αR1J

′
m(αR1) + ζ1Jm(αR1)

αR1Y
′
m(αR1) + ζ1Ym(αR1)

= −M(X)

N(X)
,

where ζj = λ2D0Rj/iωZj.
The amplitude function N(X) is determined from the solvability condition given

by the O(ε) problem in (72). The operator rL is self-adjoint in this case, and since∫ R2

R1

A0L(A1)r dr = R2

[
A0

∂A1

∂r
− A1

∂A0

∂r

]
r=R2

− R1

[
A0

∂A1

∂r
− A1

∂A0

∂r

]
r=R1

(74)

we obtain

d

dX

[
D0

ωσ

C0

∫ R2

R1

A2
0(X, r)r dr +

D0U0

λ

{
ζ2A

2
0(X,R2) + ζ1A

2
0(X,R1)

}]

= iD0

{
2λm

C2
0

∫ R2

R1

W1(X, r)A
2
0(X, r) dr +

[
rR1(X, r)A0(X, r)

]R2

R1

+
2mζ2

λR2

W1(X,R2)A
2
0(X,R2) +

2mζ1

λR1

W1(X,R1)A
2
0(X,R1)

}
, (75)
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where R1 is given by (67), and σ is the reduced axial wavenumber

σ =

√
1− (C2

0 −U2
0 )
α2

ω2
.

Equation (75) can be expressed in more concise form, using the solution for A0(X, r)
from (73), to obtain an expression for the variation of the unknown amplitude N(X)
in the form

d

dX

[
N2(X)f(X)

]
= ig(X)N2(X), (76)

where expressions for f(X) and g(X) appear in Appendix C. This result is again an
adiabatic invariant. It has solution

N2(X) =
N2

0

f(X)
exp

(∫ X ig(η)

f(η)
dη

)
, (77)

where N0 is an arbitrary normalization factor.
In the limit W1 → 0, we see that g(X) → 0 and the solution given by Rienstra

(1999) is again recovered.
The exponential factor in (77) can also be interpreted as an O(ε) correction to the

axial wavenumber, so that the full potential solution can be written as

φ(X, r) =
N0√
f(X)

{
Jm(αr) +

M(X)

N(X)
Ym(αr)

}

× exp

(
iωt− imθ − i

ε

∫ X

{k(η) + εk1(η)} dη

)
, (78)

where

k1(η) = − g(η)

2f(η)
.

For a hard-walled duct all eigenvalues are real, so that the functions f and g are also
real-valued. Hence the presence of O(ε) swirl in this case only changes the phase of
the potential function compared to the case of non-swirling flow, and not the modal
amplitude.

4.3. Results

The effect of O(ε) swirl on the cross-sectionally averaged amplitude is shown in
figure 7 for the parameters m = 20, ω = 26 and with a lined outer wall. The (leading-
order) axial wavenumbers in this case are identical to those of non-swirling flow.
The results show that Ā decreases significantly as the modes propagate, but this
is somewhat misleading since the exponential factor containing the change in axial
wavenumber is implicit in the amplitude variation in this case but is not included
in the previous examples for O(1) swirl. Any degree of mean swirling flow acts to
produce modes which are more cut off than in non-swirling flow, and figure 7 shows
the effect of an O(ε) change in the imaginary part of the wavenumber. In general
the upstream-propagating modes decay more than their downstream-propagating
counterparts.

In order to compare all three flow cases (no swirl, O(ε) swirl and O(1) swirl) directly
it is necessary to include the axial wavenumber variation. This can be accomplished
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Figure 7. Cross-sectionally averaged amplitudes for O(ε) swirl, m = 20, ω = 26, Z2 = 2 − i. Solid
line: duct 1, dashed line: duct 2. Results for downstream-propagating modes are normalized to
unity at the upstream end of the duct and results for upstream-propagating modes (bold lines) are
normalized to unity at the downstream end of the duct.

by considering the function

B(X) = Ā(X) exp

(
1

ε

∫ X

ki(η) dη

)
. (79)

Figure 8 shows the results for both the contracting and diverging ducts with a lined
outer wall and parameters m = 20, ω = 26. A value of ε = 0.1 has been assumed in
the calculation of B(X), so that, at the upstream end of the duct, the O(1) mean swirl
is W = Ωr and the O(ε) swirl is W = εΩr. Any degree of swirl is found to lower the
value of lnB(X) along the duct and these results are dominated by the exponential
factor in (79). For these parameters the O(ε) swirl has a slight effect, but the effect of
O(1) swirl is very pronounced and is brought about by the large effect of the swirling
flow on the value of ki.

All the results presented so far have been for modes which co-rotate with the
swirl (i.e. given that W > 0, modes with m > 0). However, counter-rotating modes
(m < 0) can also be present, and the effect of the swirl on these modes is found to
differ between the upstream- and downstream-propagating modes. Figure 9 shows the
variation of lnB(X) when m = −20. For O(ε) swirl the effect is a slight amplification
compared to non-swirling flow in all cases. When the swirl is significant, however,
the downstream-propagating mode remains considerably more damped than the non-
swirling case, but the upstream-propagating mode is amplified as it propagates.

Liners are thought to be less effective for modes which are far from cut-off.
Figures 10(a) and 10(b) show the eigenvalues for a hard-walled duct when m = −20;
the effect of mean swirl on the counter-rotating modes is to move them further from
cut-off (i.e. further from kr = −ωU0/β

2
0 ). This would suggest that the counter-rotating

modes will be less attenuated by the liner compared with those in a non-swirling mean
flow. This is certainly the case for the upstream-propagating mode (see figure 10d), and
accounts for the results in figures 9(b) and 9(d). However, the downstream-propagating
counter-rotating mode is more attenuated than its non-swirling-flow counterpart (see
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Figure 8. Values of lnB(X) when m = 20, ω = 26, Z2 = 2− i: (a) duct 1, downstream-propagating
mode, (b) duct 1, upstream-propagating mode, (c) duct 2, downstream-propagating mode, (d) duct
2, upstream-propagating mode. Bold line: O(1) swirl (i.e. W (X = 0) = Ωr), dashed line: O(ε) swirl
(i.e. W (X = 0) = εΩr), solid line: no swirl.

figure 10c) even though it is further from cut-off. Therefore the presence of mean
swirling flow invalidates the standard assumption about the effectiveness of acoustic
liners.

5. Turning-point region for the hard-walled duct
The solution given in (59) for the amplitude, N(X), becomes singular when the

function F(X) passes through zero, which corresponds to a mode changing from
cut on to cut off. In the absence of mean vorticity this occurs when the reduced
axial wavenumber, σ, passes through zero, and σ2 changes from positive (cut on) to
negative (cut off). Points such as these are called turning points, since an upstream-
propagating mode is reflected into a downstream-propagating mode. Our aim here is
to determine the effect of swirl on the behaviour at this point. In the presence of O(1)
mean vorticity σ is a function of both X and r, and it is the function

F(X) =

∫ R2

R1

rωσ

C0

D0Â
2
0 dr (80)

which passes through zero in the transition from cut on to cut off.
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Figure 9. As figure 8 but when m = −20.

At a turning point, X = Xt, higher-order second derivatives need to be included in
the solvability condition to obtain a non-singular solution. With O(ε2) terms which
contain double X-derivatives included, the solvability condition becomes

〈ψ†0, f〉 = iε

∫ R2

R1

r
∂

∂X

[
ωσ

C0

D0A
2
0

]
dr + iε

∫ R2

R1

∂

∂r

[
rΛV1

C2
0

D0A
2
0

]
dr

+iε

∫ R2

R1

rA0

[
∂

∂X
(iD0X0) + g5

]
− iε

∫ R2

R1

(Y ∗3 f3 + Y ∗4 f4)r dr

−ε2
∫ R2

R1

rA0

[
∂2A0

∂X2
+
∂A0

∂X

∂D0

∂X
− D0U0

∂

∂X

(
U0

C2
0

∂A0

∂X

)]
dr

+ε2
∫ R2

R1

rA0kD0(∂U0/∂r)(∂W0/∂X)

iΛ(1/r)∂(rW0)/∂r

∂A0

∂X
dr = 0. (81)

The functions f3, f4 and g5 are given in Appendices A and B. The second term on the
right-hand side of (81) can be integrated directly and vanishes in the locally parallel
duct approximation. Terms such as D0, U0,W0, C0, R1, R2 and the numerical solutions
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Figure 10. Eigenvalues for duct 1 when m = −20, ω = 26. Dashed lines correspond to non-swirling
flow, and solid lines to swirling flow with Ω = 0.3. kr as a function of X for hard-walled duct 1:
(a) downstream-propagating mode, (b) upstream-propagating mode. Axial wavenumbers in complex
k-plane for lined duct: (c) downstream-propagating mode, (d) upstream-propagating mode. (Circles
denote values at X = 0.)

are expanded about the turning point, Xt, which leads to the equation

2
dN

dX
F̃(X) +N(X)

dF̃

dX
+N(X)G̃+ iεβ

d2N

dX2
= 0, (82)

where

F̃(X) =

∫ Rt2

Rt1

rωσDt
0

Ct
0

Â2
0(Xt, r)r dr, (83)

G̃ =

∫ Rt2

Rt1

(Â0(Xt, r)ĝ
t
5 − iŶ t∗

3 f̂
t
3 − iŶ t∗

4 f̂
t
4)r dr, (84)

β =

∫ Rt2

Rt1

Dt
0Â

2
0(Xt, r)r

(
1− Ut

0
2

Ct
0

2

)
dr, (85)

and superscript t denotes evaluation at Xt.
Figure 11 shows the axial wavenumber and the variation in F2(X) when a mode

changes from cut on to cut off. It can be seen that the function F2(X) does not pass
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Figure 11. The case of a single turning point in duct 1. (a) Axial wavenumber, (b) F2(X). Solid
lines denote real parts, dashed lines denote imaginary parts. m = 20, ω = 24.

through zero simply (as in the case of zero mean vorticity), but changes from being
real and positive when the mode is cut on to complex when it becomes cut off. Thus
the leading-order expansion of F2(X) about Xt gives

F̃2(X̄) = a2
0X̄ + a2

1X̄
3/2 (86)

where X̄ = Xt − X and a0, a1 are constants. In contrast, for uniform non-swirling
flow σ2 is expanded in a series of integer powers of X̄.

By writing

N(X̄) = Ñ(X̄) exp

(
− i

εβ

∫ X̄

F̃(η) dη

)
= Ñ(X̄) exp

(
− i

εβ

{
2

3
a0X̄

3/2 +
a2

1

4a0

X̄2

})
,

(87)

we find, after substitution into (82), that the amplitude in the inner turning-point
region is governed by

ε2Ñ ′′ +
(
aX̄ + bX̄3/2 + cX̄2 + εd

)
Ñ = 0, (88)

where ′ denotes differentiation with respect to X̄, and

a =
a2

0

β2
, b =

a2
1

β2
, c =

a4
1

4β2a2
0

, d =
iG̃

β
.
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Using the rescaling X̄ = ε2/3a−1/3y, the amplitude equation is transformed into a
modified Airy equation

d2Ñ

dy2
+ (y + ε1/3ba−7/6y3/2 + ε2/3ca−4/3y2 + ε1/3a−2/3d)Ñ = 0. (89)

Following the method in Bender & Orszag (1978) for higher-order solutions to
turning-point problems, the solution to this Airy equation is

Ñ(X̄) ∼ D
(

1− cX

5a
− 2bX̄7/2

35ε2

)
Ai

(
−a1/3ε−2/3

{
X̄ +

cX̄2

5a
+
εd

a

})
, (90)

where Ai is the Airy function of the first kind and D is an arbitrary constant. Note
that the origin of the Airy function is shifted by a small amount −εd/a, which is in
general complex, so that there is a small shift in the apparent point of cut-off on
the real axis from X̄ = 0 to X̄ = −εRe(d/a). The asymptotic expansion of the Airy
function for large |X̄| can be used in order to match the inner solution far from the
turning point to the outer solution (35) as X → Xt. From Abramowitz & Stegun
(1965)

Ai(−z) ∼ 1√
π
z−1/4

{
sin(ξ + π/4)− 5

72ξ
cos(ξ + π/4)

}
as z →∞, (91)

where ξ = (2/3)z3/2. Here the first two terms in the asymptotic expansion of Ai(−z)
are taken since (90) is a second-order solution. We must also retain one term beyond
the physical-optics approximation in the outer WKB solution in order to match
exactly. Details of this can be found in Bender & Orszag (1978). The reflection
coefficient at the corrected turning point can be determined from (91), and takes the
value exp (iπ/2), exactly as in the case of zero mean swirl.

For O(ε) mean swirl the solution for N(X) again breaks down at a turning point
when f = 0, or equivalently in this case σ = 0. In the region of a turning point a
similar analysis can be carried out to that described above. In this case σ2 > 0 for a
cut-on mode and σ2 < 0 for a cut-off mode. Thus the leading-order expansion for σ
is taken to be

σ = σ0(Xt −X)1/2. (92)

The amplitude equation becomes

ε2Ñ ′′ + (ãX̄ + εd̃)Ñ = 0, (93)

where

ã = ω2σ2
0

(
1− U2

0

C2
0

)−2

, d̃ =
−g(Xt)(

1− U2
0

C2
0

)t ∫ Rt2

Rt1

φ2
m(Xt, r)r dr

,

and the solution is

Ñ(X̄) = DAi

(
−ã1/3ε2/3

{
X̄ +

εd̃

ã

})
. (94)

It therefore follows that the effect of the swirl is again to shift the turning point by
an O(ε) amount, and that the reflection coefficient at this corrected turning point is
again exp (iπ/2). It is interesting to note that both the O(1) and the O(ε) swirl cases
lead to an O(ε) correction to the position of the turning point. This is because the
shift in both cases arise from the O(1) correction to the carrier-wave phase contained
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in the secularity condition. In the small-swirl case the phase correction can be seen
explicitly in (78), while for O(1) swirl it is given implicitly in (59) by noting that G is
in general complex, even for a hard-walled duct. Of course, the small-swirl limit of
the O(1) swirl solution will agree with the O(ε) swirl analysis, but the small-swirl limit
of the turning-point correction, −εd/a, will not be the same as the O(ε) result, −εd̃/ã.
This is because the effects of swirl are also contained within the leading-order phase,
k0, for O(1) swirl, and this must be included in order to match with the small-swirl
analysis.

6. Summary
A theory has been developed to determine how small unsteady disturbances propa-

gate in a slowly varying cylindrical duct carrying mean swirling flow. This is achieved
through application of the multiple-scales technique to the mean flow and distur-
bance equations to obtain an explicit multiple-scales solution. The possibility of
finite-impedance boundaries is included in the analysis.

The presence of mean vorticity means that the disturbance field must be decom-
posed into potential and vortical parts. Linearization of the governing equations then
leads to a set of coupled acoustic–vorticity equations. The leading-order solution
is obtained by solving a discretized version of the equations at each axial location
and the amplitude variation is determined from a secularity condition. In order to
determine this condition the adjoint solution for the leading-order coupled acoustic–
vorticity equations must be identified. The analysis when the mean swirl is taken to
be O(ε) is particularly attractive since it is simplified considerably. In this limit the
disturbance equations decouple, and the leading-order solution becomes identical to
that given by Rienstra (1999) with the presence of mean swirl velocity modifying the
amplitude variation.

Examples are shown for both hard-walled ducts and ducts with finite-impedance
walls. The results focus on comparing the first radial-order acoustic mode in non-
swirling flow with its swirling flow equivalent. The presence of mean swirl is found
to produce a large difference in axial wavenumber and cross-sectionally averaged
amplitude along the duct, compared to a non-swirling flow. A function, defined in
(79), which combines the axial wavenumber and the averaged amplitude variation
allows a direct comparison between the three mean flow cases for a duct with finite-
impedance walls. The response is dominated by the imaginary part of the axial
wavenumber, and since the presence of mean swirl moves co-rotating modes closer
to cut-off, these modes are always much more damped than those in a non-swirling
flow. An amplifying effect is observed for some counter-rotating modes.

Also considered is the solution in the region of a turning point where the general
multiple-scales method breaks down. Analysis shows that the amplitude in this region
is governed by a form of Airy’s equation. The effect of mean swirl is to shift the origin
of the Airy function by a small amount from the turning-point location. For O(1)
mean swirl the origin is shifted into the complex plane, and for O(ε) mean swirl the
origin is a small axial distance away from the turning point. However, the reflection
coefficient at this corrected turning point is exp (iπ/2) in both cases, exactly as in
non-swirling steady flow.

The work described in this paper is supported by a research grant from EPSRC,
reference GR/L80317.
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Appendix A. Operators and functions for O(1) mean swirl
The operators L and K appearing in (43) and (44) are

L =



P
(
−2ωmU0D0

C2
0β

2
0

) (
D0

∂

∂r
+

1

r

∂rD0

∂r

)
−mD0

r

0
1

β2
0

0 0

m

r

1

r

∂(rW0)

∂r
0 ωm

2W0

r

1

r

∂(rW0)

∂r

∂

∂r
0

1

r

∂(rW0)

∂r
ωm


,

K =



0 D0 0
D0∂U0/∂r

(1/r)∂(rW0)/∂r

1 0 0 0

−∂U0

∂r
0 U0 0

0 0 0 U0


,

where ωm = ω − mW0/r and P is the operator

P =
1

r

∂

∂r

(
rD0

∂

∂r

)
+ D0

(
ω2
m

C2
0

− m2

r2

)
.

The vector f = (f1, f2, f3, f4) appearing in (44) is

f1 = i

{
1

A0

∂

∂X

[
ωσ

C0

D0A
2
0

]
+

1

rA0

∂

∂r

[
rΛV1

C2
0

D0A
2
0

]
+

∂

∂X

[
D0(∂U0/∂r)iT0

(1/r)∂(rW0)/∂r

]

+ kD0

[
(∂U0/∂r)g2 − (g1/r)∂(rW0)/∂r

(iΛ/r)∂(rW0)/∂r

]}
,

f2 = 0,

f3 = i

{
V1

∂R0

∂r
+U0

∂R0

∂X
+R0

∂V1

∂r
− ∂U0

∂r

∂A0

∂X

}
,

f4 = −
{
V1

∂T0

∂r
+U0

∂T0

∂X
+
V1T0

r
− ∂W0

∂X
(ikA0 −X0)

}
,

where

g1 =

{
V1

∂X0

∂r
+U0

∂X0

∂X
+X0

∂U0

∂X
+

im

r

∂W0

∂X
A0

}
,

g2 = −f4,

and σ satisfies the relation
ωσ

C0

=
U0Λ

C2
0

+ k.
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The adjoint operator is

S† =



P −k∗
(
m

r

1

r

∂(rW0)

∂r
+ k∗

∂U0

∂r

)
−D0

(
2ωmU0

C2
0β

2
0

+ k∗
)

1

β2
0

0

−D0

∂

∂r
0 (ωm − k∗U0)

−D0

(
m

r
+

k∗∂U0/∂r

(1/r)∂(rW0)/∂r

)
0

2W0

r

−
(

1

r

∂2

∂r2

(
∂(rW0)

∂r

)
+

1

r

∂(rW0)

∂r

∂

∂r

)
0

1

r

∂(rW0)

∂r

(ωm − k∗U0)



Appendix B. Functions defining amplitude variation for O(1) mean swirl
The functions appearing in (58) are

F(X) =

∫ R2

R1

{
rωσ

C0

D0Â
2
0

}
dr +

[
rD0U0

D0ΛÂ
2
0

iωZ2

]
R2

+

[
rD0U0

D0ΛÂ
2
0

iωZ1

]
R1

,

G(X) = −
∫ R2

R1

[{
∂

∂X

(
rωσ

C0

D0Â
2
0

)
+
∂

∂r

(
rΛV1

C2
0

D0Â
2
0

)}
+ Â0r

{
∂

∂X
(iD0X̂0) + ĝ5

}
−i Ŷ ∗3 f̂3r − iŶ ∗4 f̂4r

]
dr −

[
rD0Â0

dR2

dX
(kÂ0 + iX0)

]
r=R2

+

[
rD0Â0

dR1

dX
(kÂ0 + iX̂0)

]
r=R1

−
[
rD0

{
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r
+

dR2

dX

∂U0

∂r

}(
D0ΛÂ

2
0

iωZ2

)]
r=R2

−
[
rD0

{
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r
+

dR1

dX

∂U0

∂r

}(
D0ΛÂ

2
0

iωZ1

)]
r=R1

where

ĝ5 = kD0

{
(∂U0/∂r)ĝ2 − (ĝ1/r)∂(rW0)/∂r

(iΛ/r)∂(rW0)/∂r

}
.

The functions f̂3, f̂4, ĝ1, ĝ2 refer to the functions defined in Appendix A but using Â0,

R̂0, etc. instead of A0, R0, etc.
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Appendix C. Functions defining amplitude variation for O(ε) mean swirl
The functions in the O(ε) amplitude equation (77) are

f(X) =
D0ωσ

C0

∫ R2

R1

φ2
m(X, r)r dr +

D0U0

λ

{
ζ2φ

2
m(X,R2) + ζ1φ

2
m(X,R1)

}
,

g(X) =
2λmD0

C2
0

∫ R2

R1

W1(X, r)φ
2
m(X, r) dr − D0m

λ

[
1

r

∂(rW1)

∂r
φ2
m(X, r)

]R2

R1

+
2D0m

λ

{
ζ2W1(X,R2)

R2

φ2
m(X,R2) +

ζ1W1(X,R1)

R1

φ2
m(X,R1)

}
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